Adaptive Anisotropic Diffusion for Ultrasonic Image Denoising and Edge Enhancement

نویسندگان

  • Shujun Fu
  • Qiuqi Ruan
  • Wenqia Wang
  • Yu Li
چکیده

Utilizing echoic intension and distribution from different organs and local details of human body, ultrasonic image can catch important medical pathological changes, which unfortunately may be affected by ultrasonic speckle noise. A feature preserving ultrasonic image denoising and edge enhancement scheme is put forth, which includes two terms: anisotropic diffusion and edge enhancement, controlled by the optimum smoothing time. In this scheme, the anisotropic diffusion is governed by the local coordinate transformation and the first and the second order normal derivatives of the image, while the edge enhancement is done by the hyperbolic tangent function. Experiments on real ultrasonic images indicate effective preservation of edges, local details and ultrasonic echoic bright strips on denoising by our scheme. Keywords—anisotropic diffusion, coordinate transformation, directional derivatives, edge enhancement, hyperbolic tangent function, image denoising.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Preserving Nonlinear Diffusion for Ultrasonic Image Denoising and Edge Enhancement

Utilizing echoic intension and distribution from different organs and local details of human body, ultrasonic image can catch important medical pathological changes, which unfortunately may be affected by ultrasonic speckle noise. A feature preserving ultrasonic image denoising and edge enhancement scheme is put forth, which includes two terms: anisotropic diffusion and edge enhancement, contro...

متن کامل

Image Denoising Using Anisotropic Diffusion Equations on Reflection and illumination Components of Image

This paper proposes a new hybrid method based on Homomorphic filtering and anisotropicdiffusion equations for image denoising. In this method, the Homomorphic filtering extracts the reflectionand illumination components of a noisy image. Then a suitable image denoising method based onanisotropic diffusion is applied to each components with its special user-defined parameters .This hybridscheme ...

متن کامل

BLADE: Filter Learning for General Purpose Image Processing

The Rapid and Accurate Image Super Resolution (RAISR) method of Romano, Isidoro, and Milanfar is a computationally efficient image upscaling method using a trained set of filters. We describe a generalization of RAISR, which we name Best Linear Adaptive Enhancement (BLADE). This approach is a trainable edge-adaptive filtering framework that is general, simple, computationally efficient, and use...

متن کامل

On the Combined Forward and Backward Anisotropic Diffusion Scheme for the Multispectral Image Enhancement

In this paper a new approach to the problem of edge preserving smoothing is proposed and evaluated. The new algorithm is based on the combined forward and backward anisotropic diffusion with incorporated time dependent cooling process. This method is able to efficiently remove image noise while preserving and enhancing image edges, lines and corners. The new method has been applied for the deno...

متن کامل

Deblurring And Denoising with Edge Enhancement of Satellite Images Using Super Resolution Techniques

In this paper we propose two algorithms of super resolution techniques. We introduce the Iterative Back Projection (IBP) algorithm in the case of deblurring images and second algorithm consist an edge-enhancing superresolution algorithm using anisotropic diffusion technique. Because we solve the super-resolution problem by incorporating anisotropic diffusion and IBP, these techniques does more ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012